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Abstract
Teleportation is viewed as a quantum channel. We present an explicit expression
for the general teleportation channel in the Kraus decomposition form. We
then analyse optimal teleportation procedures for a noisy entangled resource,
Bell measurement by the sender and arbitrary operations by the receiver.
Our general result allows us to derive the corresponding quantum channel
and fidelity, thereby enabling us to formulate the fidelity-based optimization
problem and to conclude that this is a problem of semidefinite programming.
We offer an alternative viewpoint on optimal teleportation, namely one can
perform corrective operations at the receiver’s side instead of first manipulating
entanglement, and we give an optimal teleportation strategy.

PACS numbers: 03.67.Hk, 03.65.Ud, 89.70.+c

1. Introduction

Quantum teleportation [1], one of the most fascinating discoveries in quantum information
science, plays a key role in quantum communication and quantum computation [2].
Teleportation can naturally be related to quantum channels since it is a process of transmission
of an unknown quantum state, although the transmission is implemented not by directly sending
particles through a channel but via local operations, classical communication and shared
entanglement (LOCCSE). Mathematically, a quantum channel is described by a completely
positive trace-preserving (CPTP) linear map that maps an input state onto an output one:
ρ ′ = E(ρ). The map E , also called a quantum operation, can be represented in the form [2, 3]
E(ρ) = ∑

j AjρA
†
j with

∑
j A

†
jAj = I , known as the operator-sum representation or Kraus

decomposition.
The nature of the teleportation channel is dependent on both the entangled state

resource and the particular LOCC protocol [4–6]. Recently it was shown that the standard
teleportation protocol (Bell measurement and corresponding Pauli rotations) with a mixed
entangled resource is equivalent to a generalized depolarizing channel [7]. This result
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was then generalized to continuous variable teleportation [8] and the situation where the
receiver is allowed to perform arbitrary unitary operations [9]. A natural question to ask
is: how to formulate a general teleportation process in terms of a quantum channel? By
general teleportation we mean the generalization of the standard teleportation to an arbitrary
mixed entangled state as the resource, a generalized measurement on the sender’s side and
corresponding CPTP operations on the receiver’s side. This generalization is important in that
for practical purposes, one has to consider various kinds of non-idealities and try to design
corresponding strategies to conquer them [11–17]. Nielsen and Caves [10] formulated the
actions of the resource and the sender’s measurement as a quantum operation, regarding the
receiver’s operations as reversing the quantum operation. In section 2, we present an explicit
expression for the general teleportation channel by adapting the Nielsen–Caves formalism to
formulate the whole teleportation process. This completely generalizes the result of [7].

In section 3, we consider the following problem: given an arbitrary resource, what are
the receiver’s operations that maximize the fidelity provided that the sender is restricted to
performing a Bell measurement? Using the general result in section 2 for the special case,
we obtain the corresponding quantum channel and fidelity. This allows us to express the
fidelity-based optimization problem and to conclude that this is a problem of semidefinite
programming. Our results offer an alternative viewpoint, namely in order to achieve optimal
teleportation one can perform manipulation at the receiver’s side after the measurement, instead
of first manipulating the entangled state [18]; and we give an optimal teleportation strategy.

2. Explicit expression for the general teleportation channel

Suppose that the sender Alice and the receiver Bob share two particles in an arbitrary mixed
entangled state τAB , where A and B stand for the particles on Alice’s and Bob’s sides,
respectively, and Alice is given a particle Q in an unknown quantum state ρ̄Q to be teleported
to Bob, each particle with the same d-dimensional state space. Thus the composite system
is initially in the state ρ̄Q ⊗ τAB . To start teleportation, Alice performs a measurement on
particles Q and A, which is described by a positive operator-valued measure (POVM)

�i
QA = A

i†
QAAi

QA

∑
i

�i
QA = IQA (1)

the index i labelling the outcomes of the measurement. The state of Bob’s particle B
conditioned on the outcome i is given by

ρi
B = 1

pi

trQA

[(
Ai

QA ⊗ IB

)
(ρ̄Q ⊗ τAB)

(
A

i†
QA ⊗ IB

)]
(2)

where

pi = trQAB

[(
Ai

QA ⊗ IB

)
(ρ̄Q ⊗ τAB)

(
A

i†
QA ⊗ IB

)]
is the probability of obtaining the outcome i. Then Bob applies an i-dependent transformation
on his particle. The most general transformation is a CPTP map of the form

E i
(
ρi

B

) =
∑

j

D
ij

B ρi
BD

ij†
B

∑
j

D
ij†
B D

ij

B = IB. (3)

Therefore, over all outcomes i, the final total teleported state reads

ρ ′
B =

∑
i

piE i
(
ρi

B

) =
∑
i,j

D
ij

B trQA

[(
Ai

QA ⊗ IB

)
(ρ̄Q ⊗ τAB)

(
A

i†
QA ⊗ IB

)]
D

ij†
B . (4)
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Now a trick will be applied. Following the line in [10], we introduce the swap operator
UQB which swaps the states of particles Q and B, while leaving particle A alone. Clearly,
UQB = U−1

QB = U
†
QB. By using the swap operator we have

ρ̄Q ⊗ τAB = UQB(τ̄QA ⊗ ρB)UQB (5)

where ρB (τ̄QA) is the counterpart of ρ̄Q (τAB), i.e., ρB is exactly the same state of particle
B as the one of particle Q. We expand τ̄QA in the complete orthonormal set of its eigenstates∣∣s̄k

QA

〉

τ̄QA =
∑

k

rk

∣∣s̄k
QA

〉 〈
s̄k
QA

∣∣ . (6)

Substituting equations (5) and (6) into equation (4) and performing the partial trace in any
complete orthonormal basis

∣∣P l
QA

〉
for the joint system Q and A yields

ρ ′
B = E(ρB) =

∑
i,j,k,l

M
ijkl

B ρBM
ijkl†
B (7)

where the operator M
ijkl

B acting on particle B is given by

M
ijkl

B = √
rkD

ij

B

〈
P l

QA

∣∣ (Ai
QA ⊗ IB

)
UQB

∣∣s̄k
QA

〉
. (8)

Using the completeness relations in (1) and (3), it is easy to check that∑
i,j,k,l

M
ijkl†
B M

ijkl

B = IB. (9)

Thus we have obtained an explicit expression for a general teleportation channel, the actions
of the entangled resource and the LOCC protocol being reflected by the Kraus operators M

ijkl

B .
Because of its generality, this result enables one to obtain the quantum channel of particular
teleportation processes.

3. Optimal teleportation via Bell measurement

For simplicity, we next restrict our attention to the two-dimensional state space, although
our discussions can naturally be generalized to the high-dimensional case by using the
generalized Pauli operators. Let us now study the teleportation via the Bell measurement
on the sender’s side and corresponding CPTP operations on the receiver’s side. In this case
we have Ai

QA = ∣∣�i
QA

〉 〈
�i

QA

∣∣, where
∣∣�i

QA

〉
(i = 0, 1, 2, 3) are the Bell states associated with

the Pauli operators σ 0 = I, σ 1 = σx, σ
2 = σy, σ

3 = σz by
∣∣�i

QA

〉 = (
σ i

Q ⊗ σ 0
A

) |�〉, with
|�〉 one of the maximally entangled Bell states. We make the choice

∣∣P l
QA

〉 = ∣∣�l
QA

〉
. Then

equation (7) reduces to

ρ ′
B =

∑
i,j,k

rkD
ij

B

〈
�i

QA

∣∣UQB

∣∣s̄k
QA

〉
ρB

〈
s̄k
QA

∣∣UQB

∣∣�i
QA

〉
D

ij†
B (10)

where we have used
〈
�l

QA

∣∣�i
QA

〉 = δli . It is easy to give that

UQB = 1

2

∑
m

σm
Q ⊗ σ 0

A ⊗ σm
B . (11)

We expand
∣∣s̄k

QA

〉
in the Bell basis:

∣∣s̄k
QA

〉 =
∑

n

skn

∣∣�n
QA

〉
. (12)
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Let the operator
〈
�0

QA

∣∣UQB

∣∣s̄k
QA

〉
acting on particle B be denoted by Ek

B . Using the above
expressions and the properties of Pauli operators, we obtain

Ek
B = 1

2

∑
n

sknσ
n
B (13)

〈
�i

QA

∣∣UQB

∣∣s̄k
QA

〉 = Ek
Bσ i

B. (14)

We finally get

ρ ′ =
∑
i,j,k

rkD
ijEkσ iρσ iEk†Dij†

= 1

4

∑
i,j,k,n,n′

rkskns
∗
kn′D

ijσ nσ iρσ iσ n′
Dij†

= 1

4

∑
n,n′

〈�n|τ |�n′ 〉
∑
i,j

Dijσ nσ iρσ iσ n′
Dij† (15)

where we have used
∑

k rkskns
∗
kn′ = 〈�n|τ |�n′ 〉, and we have dropped the subscripts Q,A,B.

Equation (15) is the explicit expression for the quantum channel of the teleportation via Bell
measurement. If Bob’s operations are unitary, namely Dij = Ui , then we have

ρ ′ = 1

4

∑
n,n′

〈�n|τ |�n′ 〉
∑

i

U iσ nσ iρσ iσ n′
Ui†. (16)

This is just the result in [9]. Specifically, if Ui = σ i , i.e., the standard teleportation is
performed, equation (16) reduces to

ρ ′ = 1

4

∑
n,n′

〈�n|τ |�n′ 〉
∑

i

σ iσ nσ iρσ iσ n′
σ i (17)

=
∑

n

〈�n|τ |�n〉σnρσn. (18)

The equality between equations (17) and (18) can be shown by noting that all terms except
those of the form given in equation (18) cancel. From equation (18), it follows that the general
teleportation channel reduces to the generalized depolarizing channel when teleportation is
performed with an arbitrary mixed entangled resource under the standard protocol. Here we
have presented another proof of the important conclusion as a special case of our general
discussion.

The explicit input–output relation (15) makes it easy to calculate the fidelity of
teleportation. Suppose that the to-be-teleported pure state is ρ = |ψ〉〈ψ |. Then the
teleportation fidelity is

F = 〈ψ |ρ ′|ψ〉
= 1

4

∑
n,n′

〈�n|τ |�n′ 〉
∑
i,j

〈ψ |Dijσ nσ i |ψ〉〈ψ |σ iσ n′
Dij†|ψ〉

= 1

4

∑
n,n′

〈�n|τ |�n′ 〉
∑
i,j

〈ψ |〈ψ |Dijσ nσ i ⊗ σ iσ n′
Dij†|ψ〉|ψ〉 (19)

where the average is taken over the isotropic a priori distribution of states to be teleported.
In order to calculate the fidelity F, we need an irreducible n-dimensional representation of
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the unitary group U(n), denoted by G. Let U(g) be the unitary matrix representation of the
element g of G. Recalling Schur’s lemma, we have the identity∫

G
dg(U †(g) ⊗ U †(g))σ (U(g) ⊗U(g)) = α1I ⊗ I + α2P

with

α1 = n2 tr(σ ) − n tr(σP )

n2(n2 − 1)
α2 = n2 tr(σP ) − n tr(σ )

n2(n2 − 1)

for any operator σ acting on the tensor space, where P is an operator such that P |ij 〉 = |ji〉.
The invariant (Haar) measure dg on G is normalized by

∫
G dg = 1. Thus (·) in equation (19)

can be calculated as follows,

(·) = 〈00|
∫

G
dg(U †(g) ⊗ U †(g))(Dijσ nσ i ⊗ σ iσ n′

Dij†) (U(g) ⊗ U(g)) |00〉

= 1

6
[tr(Dijσ nσ i) tr(σ iσ n′

Dij†) + tr(σ nσ n′
Dij†Dij )]

where the identity tr12((A ⊗ B)P ) = tr(AB) has been used. Using the completeness relation
in (3) and the fact that any operator χ can be expanded as

χ = 1

2

∑
i

tr(σ iχ)σ i

we finally arrive at

F = 1

6
〈�|


∑

i,j

(σ iDij ⊗ I )τ (Dij†σ i ⊗ I )


 |�〉 +

1

3
= 2f + 1

3
(20)

f = 1

4
〈�|


∑

i,j

(σ iDij ⊗ I )τ (Dij†σ i ⊗ I )


 |�〉 . (21)

Note that when Pauli rotations are performed by Bob, i.e., Dij = σ i , then f reduces to
the singlet fraction 〈�|τ |�〉 of the resource τ . Also, when optimal unitary operations are
performed by Bob, i.e., Dij = Ui , with Ui unitary and σ iUi = W , where W is a unitary
operator such that 〈�|(W ⊗ I )τ (W † ⊗ I )|�〉 is the fully entangled fraction [19] of the state
τ , then f reduces to the fully entangled fraction of the state τ .

There is no reason to believe that unitary operations represent the most efficient
teleportation strategy. In a surprising paper [18], Badziag et al proved that a non-unitary CPTP
map may provide better performance of teleportation than a unitary operation by showing that
for a certain entangled resource, a non-unitary amplitude-damping operation enables better
than classical teleportation even when a unitary operation does not. So it is important to find
the optimal CPTP maps which maximize teleportation fidelity. We now come to this problem.

Since CPTP maps corresponding to different measurement results i are independent, each
term in equation (21) can be maximized independently. Let us first consider the problem of
maximizing

f ′ = 〈�|(E ⊗ I )(τ )|�〉 = 〈�|

∑

j

(Cj ⊗ I )τ (Cj† ⊗ I )


 |�〉 (22)
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where Cj are the Kraus operators of the map E . Using the isomorphism [20] between the
CPTP map and the positive operator τ ′ of the bipartite system with one subsystem maximally
mixed, we can obtain [18] f ′ = tr(ττ ′). Thus the (state-dependent) maximization problem
can be formulated as

maximize tr(ττ ′) τ ′ � 0 tr2 τ ′ = I1. (23)

Here we would like to point out that this is just a problem of semidefinite programming [21]
and can easily be solved numerically with guaranteed convergence. The required knowledge of
the density matrix τ can be found experimentally with quantum tomography [22, 23]. Having
obtained the operator τ ′, one can obtain Cj [24]. Then by adopting the strategy Dij = σ iCj

for all i, f in equation (21) is maximized, and the maximum of f is given by

fmax = 〈�|

∑

j

(Cj ⊗ I )τ (Cj† ⊗ I )


 |�〉 . (24)

This is in agreement with the result on optimal teleportation [4, 18]. Namely our strategy
is optimal. The meaning of this strategy is that after receiving Alice’s measurement result
i, Bob first performs on his particle the CPTP operation denoted by Cj , then performs a
corresponding Pauli rotation. This strategy of manipulating a particle not entangled with
others is fundamentally different from the scheme of first manipulating the entanglement [18].

To be clear, we formulate the main results in this section in the following theorem:

Theorem. The optimal teleportation via a single copy of an arbitrary mixed entangled
resource τ , the sender’s Bell measurement with the result i and the receiver’s corresponding
CPTP operation described by the Kraus operators σ iCj , acts as a quantum channel

ρ ′ = 1

4

∑
n,n′

〈�n|τ |�n′ 〉
∑
i,j

σ iCjσ nσ iρσ iσ n′
Cj†σ i (25)

where |�n〉 are the Bell states. The operators Cj can be found via semidefinite programming

maximize tr(ττ ′) τ ′ � 0 tr2 τ ′ = I1

and the isomorphism between the CPTP map and the positive operator τ ′.

4. Conclusion

We have presented an explicit expression for the general teleportation channel. Using the
general result as a starting point, we have studied the teleportation via an arbitrary mixed
entangled resource, a Bell measurement by the sender and corresponding completely positive
trace-preserving operations by the receiver. As a result, we have derived the corresponding
quantum channel and the fidelity of teleportation. By maximizing the fidelity via semidefinite
programming, we have constructed an optimal teleportation strategy. We have offered an
alternative viewpoint on optimal teleportation, namely one can perform corrective operations
on the receiver’s side instead of first manipulating entanglement. It should be pointed out
here that these conclusions do not necessarily apply when the sender performs more general
measurements.

Regarding teleportation as a quantum channel provides one with an approach to study
teleportation. The power of this approach lies in the fact that it in principle allows one
to derive all results about a teleportation process, such as fidelity, since the expression for
the teleportation channel in the Kraus decomposition form provides an explicit input–output
relation. In the above we have illustrated the power of this approach. In principle, different
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combinations of entangled resources and LOCC protocols result in different quantum channels.
In addition to the case discussed above, other teleportation processes may also be discussed
from our general expression.
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